4,403 research outputs found

    Conservation laws for linear equations on quantum Minkowski spaces

    Full text link
    The general, linear equations with constant coefficients on quantum Minkowski spaces are considered and the explicit formulae for their conserved currents are given. The proposed procedure can be simplified for *-invariant equations. The derived method is then applied to Klein-Gordon, Dirac and wave equations on different classes of Minkowski spaces. In the examples also symmetry operators for these equations are obtained. They include quantum deformations of classical symmetry operators as well as an additional operator connected with deformation of the Leibnitz rule in non-commutative differential calculus.Comment: 21 pages, LaTeX fil

    Global boundary conditions for a Dirac operator on the solid torus

    Full text link
    We study a Dirac operator subject to Atiayh-Patodi-Singer like boundary conditions on the solid torus and show that the corresponding boundary value problem is elliptic, in the sense that the Dirac operator has a compact parametrix

    Matrix Cartan superdomains, super Toeplitz operators, and quantization

    Get PDF
    We present a general theory of non-perturbative quantization of a class of hermitian symmetric supermanifolds. The quantization scheme is based on the notion of a super Toeplitz operator on a suitable Z_2 -graded Hilbert space of superholomorphic functions. The quantized supermanifold arises as the C^* -algebra generated by all such operators. We prove that our quantization framework reproduces the invariant super Poisson structure on the classical supermanifold as Planck's constant tends to zero.Comment: 52

    Supersymmetry and Fredholm modules over quantized spaces

    Get PDF
    The purpose of this paper is to apply the framework of non- commutative differential geometry to quantum deformations of a class of Kahler manifolds. For the examples of the Cartan domains of type I and flat space, we construct Fredholm modules over the quantized manifolds using the supercharges which arise in the quantization of supersymmetric generalizations of the manifolds. We compute the explicit formula for the Chern character on generators of the Toeplitz C^* -algebra.Comment: 24

    Parkinson's Law Quantified: Three Investigations on Bureaucratic Inefficiency

    Full text link
    We formulate three famous, descriptive essays of C.N. Parkinson on bureaucratic inefficiency in a quantifiable and dynamical socio-physical framework. In the first model we show how the use of recent opinion formation models for small groups can be used to understand Parkinson's observation that decision making bodies such as cabinets or boards become highly inefficient once their size exceeds a critical 'Coefficient of Inefficiency', typically around 20. A second observation of Parkinson - which is sometimes referred to as Parkinson's Law - is that the growth of bureaucratic or administrative bodies usually goes hand in hand with a drastic decrease of its overall efficiency. In our second model we view a bureaucratic body as a system of a flow of workers, which enter, become promoted to various internal levels within the system over time, and leave the system after having served for a certain time. Promotion usually is associated with an increase of subordinates. Within the proposed model it becomes possible to work out the phase diagram under which conditions bureaucratic growth can be confined. In our last model we assign individual efficiency curves to workers throughout their life in administration, and compute the optimum time to send them to old age pension, in order to ensure a maximum of efficiency within the body - in Parkinson's words we compute the 'Pension Point'.Comment: 15 pages, 5 figure

    Fractional variational calculus of variable order

    Full text link
    We study the fundamental problem of the calculus of variations with variable order fractional operators. Fractional integrals are considered in the sense of Riemann-Liouville while derivatives are of Caputo type.Comment: Submitted 26-Sept-2011; accepted 18-Oct-2011; withdrawn by the authors 21-Dec-2011; resubmitted 27-Dec-2011; revised 20-March-2012; accepted 13-April-2012; to 'Advances in Harmonic Analysis and Operator Theory', The Stefan Samko Anniversary Volume (Eds: A. Almeida, L. Castro, F.-O. Speck), Operator Theory: Advances and Applications, Birkh\"auser Verlag (http://www.springer.com/series/4850

    “Scientific truth” in modern times: Some considerations

    Get PDF

    Large Deviation Principle for Product Measures

    Get PDF
    Assuming that the Large Deviation Principle (LDP) is satisfied in each component of the product space an elementary proof of the LDP for the product measure is given

    Fractional Hamilton formalism within Caputo's derivative

    Full text link
    In this paper we develop a fractional Hamiltonian formulation for dynamic systems defined in terms of fractional Caputo derivatives. Expressions for fractional canonical momenta and fractional canonical Hamiltonian are given, and a set of fractional Hamiltonian equations are obtained. Using an example, it is shown that the canonical fractional Hamiltonian and the fractional Euler-Lagrange formulations lead to the same set of equations.Comment: 8 page
    • 

    corecore